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Tropical root and tuber crops (cassava, sweet potato, taro, and yam) are staples in developing

countries where rapid urbanization is strengthening the demand for flour based foods. Quality control

techniques are still under development, and when available, laboratory analyses are too expensive.

The objectives of this study were to calibrate Near-infrared spectroscopy (NIRS) for routine analysis

of flours and to test its reliability to determine their major constituents. Flours prepared from

472 accessions (traditional varieties and breeding lines) were analyzed for their starch, total sugars,

cellulose, total nitrogen, and ash (total minerals) contents. The near-infrared (350-2500 nm) spectra

of all samples were measured. Calibration equations with cross and independent validation for all

analytical characteristics were computed using the partial least squares method. Models were

developed separately for each of the four crop species and by combining data from all spp. to predict

values within each of them. The quality of prediction was evaluated on a test set of 94 accessions

(20%) by standard error of prediction (SEP) and r2 parameters between the measured and the

predicted values from cross-validation. Starch, sugar, and total nitrogen content could be predicted,

respectively, with 87%, 86%, and 93% confidence, whereas ash (minerals) could be predicted with

71%, and cellulose was not predictable (r2 = 0.31). The statistical parameters obtained for starch,

sugars, and total nitrogen are of special interest for flour quality control. These constituents are

quantitatively the most important in the chemical composition of flours, and starch content is

negatively correlated with sugars and total nitrogen. NIRS is a low cost technique well adapted to

the conditions in developing countries and can be used for the high-throughput screening of a great

number of samples. Possible applications are discussed.
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INTRODUCTION

In developing countries, the tropical root and tuber crops,
cassava (Manihot esculenta), sweet potato (Ipomoea batatas), taro
(Colocasia esculenta), and yam (Dioscorea spp.), are the second
most important group of crops, just after the cereals. The world
production was estimated in 2008 to be around 415 millions tons
produced from 35 millions ha (1). These species belong to
different botanical families but are often grouped together
because their biological similarities: they are vegetatively propa-
gated, bulky, and perishable. In many countries, they are grown
in home gardens or in mixed cropping systems complementing
each other throughout the year to produce a steady supply of
energy.

Cassava is cooked in fresh and boiled form, in toasted granules
(gari and atti�ek�e in West Africa or farinha in Brazil), chips, flour
(lafun), and as paste (fufu) in Africa. Rapid urbanization is
strengthening flour demand, and in many African cities, cassava
flour is increasinglymixedwithwheat flour to prepare local bread
and reduce dependency on imported cereals (2). Sweet potato is

traditionally processed into dried chips and flour to preserve the
product. Sun-drying is the simplest dehydration technique, and
the roots are washed, peeled, and sliced before being exposed
directly to the sun. Different cultivars have different properties,
and farmers experiment before selecting the best one for proces-
sing, which is often not the one they prefer to consume fresh and
boiled (3). Taro cormsmay be roasted, baked, boiled, steamed, or
fried, or they may be processed into chips, flakes, and flour. The
hot air-dried chips are ground into flour with a hammer mill and
can be stored for one year. This type of flour is a base for baby
food and taro-based bread. There is significant variation in the
functional properties of the taro flours depending on the variety
used (4,5), and there are various improvements depending on the
locations and themeans available (6). Yam flour is prepared from
tubers sun-dried for several days. The dried tuber pieces are then
pulverized into flour with electric or mechanical mills. The
resulting flour can be stored in bags for months and is quite
convenient for the evergrowing cities of West Africa. The flour is
stirred over boiling water and cooked for a few minutes in order
to obtain a thick viscous fufu which resembles the one obtained
with pounded boiled yam. The varied texture characteristics of
yam flours have been shown to be of industrial interest in the
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Philippines (7). Their similarities to other commercial starches or
flours are useful for the product development of noodles, snacks,
and baby foods. In Taiwan, the incorporation ofDioscorea alata
flour in bread has been shown to markedly increase the antioxi-
dant capacity of the blended bread and does not interfere with its
acceptability (8).

The physicochemical characteristics of the tropical root and
tuber crop raw material reflect the genetic diversity of the
cultivars used in smallholder cropping systems. Chemical com-
positions in major constituents (starch, total sugars, cellulose,
total nitrogen, and minerals) also reflect this diversity (9). Un-
fortunately, in many cases, quality control techniques are still
under development, and when available, laboratory analyses are
too expensive. The paucity of technical information hinderswider
utilization and adds constraints to the development of new
processed products needed by urban dwellers. Among the numer-
ous research priorities are the characterization and the genetic
improvement of the nutritional properties of the tropical root and
tuber crops (10), but very few breeding programs have the
financial and technical means to screen large progenies for their
chemical composition.

Near-infrared spectroscopy (NIRS) has become a widely
used method of quality control in the food processing indus-
try (11-14). It is a rapid, cost-effective, and nondestructive
technique, allowing the simultaneous determination of major
constituents in a mixture bymultivariate data analysis. NIRS has
already been used to measure potato (Solanum tuberosum) tuber
quality, but the analytical performance has been shown to be
highly dependent on the cultivar (15, 16). Potato starch and
protein parameters have been estimated by NIRS. Starch con-
tent was found to be predicted with 90% confidence, while
total protein content couldbepredictedwith62%confidence (17).
Among the tropical root and tuber crops, NIRS application
to sweet potato quality control has been investigated, especi-
ally for measuring starch quality and pasting properties.
NIRS was reasonably accurate in predicting total starch and
protein contents, but the other major constituents were not
studied (18).

Although cassava, sweet potato, taro, and yam flours are
commonly used in developing countries, NIRS potential is
clearly under-researched, especially for food processing enter-
prises and for screening large number of samples in breed-
ing programs aiming at improving the chemical composition
of cultivated varieties. The objectives of the present study are
to calibrate NIRS for the routine analysis of tropical root and
tuber crops and to test its reliability in determining major
constituents (starch, total sugars, cellulose, total nitrogen, and
total minerals).

MATERIALS AND METHODS

Sample Preparation. Overall, 472 samples were collected from
germplasm collections maintained at the Vanuatu Agricultural and
Research and Technical Center (VARTC) on Santo Island, Vanuatu
(Table 1). Local cultivars originated from different islands of Vanuatu,
while introduced cultivars originated from different Asian countries.
Breeding lines were part of populations obtained via open-pollination in
polycross plots corresponding to different cycles of a recurrent selection
program. The accessions were selected to represent the morphological
variation existing within each species. These accessions were planted
together and at the same time in a common plot and were harvested when
mature.Depending on genotype, harvest was conducted 3-4months after
plantation for sweet potato accessions and 8-10months after for cassava,
taro and yams. Central transverse sections of the roots and tubers were
selected and cut for each accession. Approximately 1-2 kg of fresh weight
were manually peeled and sliced into chips and oven-dried at 60 �C for
48 h. Dry matter samples were split into two subsamples: one subsample

was used for chemical analysis, and the other subsample was used for
NIRS measurements. Samples of 150-250 g, prepared at the Food
Processing Laboratory of the Department of Agriculture in Port-Vila,
Vanuatu, were sent to France for chemical analyses. Samples of approxi-
mately 50 g of dried chips were processed into flour just after oven drying
and were ground in a stainless kitchen steel mill (SEB, France) in Vanuatu
prior to NIRS analysis.

Chemical Analyses. Analyses of major constituents (residual moist-
ure, starch, sugars, cellulose, total nitrogen, and ash) were conducted by
Laboratoire d’Analyses Agricoles Teyssier, Bourdeaux, France, according
to AFNOR (Association Franc-aise, the French standards association)
and/or EEC methods (The AFNOR group: http://www.boutique.afnor.
org/BGR1AccueilGroupe.aspx/).

Following NF (Norme Franc-aise) V 18-109 for dry matter determina-
tion, samples were dried again to remove residual moisture (measured
as % of total dry weight), and the powder was analyzed on an oven-dried
air basis. Moisture was therefore expressed as a measurement of the
sample prior to drying. All measurements were then expressed in percen-
tages of dry matter (% DM), and the data were adjusted by the residual
moisture following oven drying. Starch was quantified using Ewer’s
protocol (NF ISO 10-520) corresponding to hydrolysis in HCl, filtration,
and polarimetric measurement. Total sugars were quantified through the
colorimetricmethod ofLuff Schoorl (CEE 98\54\CE). Crude cellulosewas
measured by the Weende method (NF V 03-040), which corresponds to
nonsoluble organic residues obtained by sulfuric acid and alkaline treat-
ments. Total nitrogen content was calculated using the Kjeldahl method
(NF V 18-100). Estimation of total mineral content was obtained from
ashes produced at 550 �C (NF V 18-101). All analyses were performed in
duplicate with an accepted mean coefficient of variation of (3% for
starch, sugars, cellulose, and residual moisture, and (2% for proteins
(total N) and ashes (minerals).

NIRSMeasurements andData Pretreatment. Flour sample granu-
les size was homogenized using four sieves with decreasing diameters until
flour granules pass through the 106 μm sieve. An ASD LabSpecPro
spectrophotometer from Analytical Spectral Devices Inc. (ASD Inc.,
Boulder, Colorado, USA) fitted with a muglight or high intensity source
probe (HISP) (ASD Inc.) was used for themeasurement of all spectra over
the wavelength range of 350-2500 nm. On average, 6 g of homogenized
flour was placed in an individual cell for the HISP and compacted with a
tea spoon to eliminate air voids within the sample. Each spectrum was
obtained by averaging three different cells (repetitions) per sample with
25 scans for each. A reference reading (baseline) was taken when starting a
session and another every 30 min. All of the spectra were recorded in
diffuse reflectance as log(1/R) with respect to a Labsphere’s Spectralon
material reflectance standard (Labsphere, Inc.), which is a lambertian
reflective PTFE (thermoplastic resin) with high overall reflectance. Over-
all, 472 spectra were recorded and converted to absorbance (Figure 1)
using the Indico software (ASD Inc.).

Data Analysis and Model Development. The spectra and reference
data were mathematically modeled using GRAMS/AI version 8.0 with
PLSPlus/IQ spectroscopy software (Thermo Electron Corporation).
Using the values obtained with chemical analyses as the analyte value, a
separate calibration was made for each of the five major constituents
of the dry matter: starch, total sugars, cellulose, total nitrogen, and ash
(minerals). Calibration of residual moisture was not attempted because
spectra were recorded in Vanuatu, just after oven drying the samples,

Table 1. Total Number of Accessions Analyzed for Major Constituents and
NIRS

species

total

accessions

local

cultivars

introduced

cultivars

breeding

lines

cassava (Manihot esculenta) 62 62 0 0

sweet potato (Ipomoea batatas) 167 21 6 140

taro (Colocasia esculenta) 108 47 16 45

yams (Dioscorea spp.) 135 105a 20b 10c

total 472 235 42 195

a Including 70 D. alata, 5 D. bulbifera, 14 D. esculenta, 6 D. nummularia, and
10 D. transversa. b Including 14 D. alata and 6 D. cayenensis-rotundata. c Including
10 D. alata.
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while residual moisture was measured in France on hygroscopic dry
raw material.

Partial least-squares (PLS) regression technique was used to develop a
predictive model of the near-infrared part of the spectra (1000-2500 nm).
The aim of PLS regression was to get as much concentration information
as possible into the first PLS factors (19). The optimum number of PLS
factors used for prediction was determined by full cross-validation and
PRESS (prediction residual error sum of squares). Full cross-validation is
leave-one-out, and n- 1 is the calibration set, and one sample is predicted.
This is repeated until all of the samples are predicted. Additionally, light
scattering effects due to particle size differences were corrected by multi-
plicative scatter correction (MSC), a commonmethod squaring the effects
by adjusting the spectra based on ranges of wavelengths supposed to carry
no specific chemical information. The data was mean-centered and the
average spectrum calculated from all of the calibration spectra and then
subtracted from every calibration spectrum. Mean centering enhances the
subtle differences between the spectra. PLS models were developed for
each species separately, and a model combining all crop species (all spp.,
Table 3) together was also created.

In order to assess the performance of the calibration, samples were
separated into two sets: the calibration and the prediction sets. The
calibration set contained 378 samples, and the prediction set was created
by randomly selecting 20%of the accessionswithin each crop species (over
a total of 472 accessions) and included 12 cassava accessions, 33 sweet
potato, 22 taro, and 27 yams (total of 94 samples) representing subtest sets
for each crop species (Table 3).

As part of the model process, a principal component analysis (PCA)
was used to check for gross spectral outliers. TheMahalanobis distance of
each spectrum to the mean spectrum of the group was calculated. The
removal of spectral outliers was based on Mahalanobis distance H > 3
from the average spectrum of the file, and outlier samples were removed
because of their heterogeneity. Spectra and concentration outliers were
removed, and PLS was run again until the highest r2cv (determination
coefficient for cross-validation) and the smallest standard error of cross-
validation (SECV) were obtained. At that point, factor loadings were used
to determine which wavelengths were important to correlate with con-
centrations in order to narrow down the spectral region. The PLS analysis
was then conducted again on this new region in order to obtain for each
constituent equations with higher explanation of the total variability in the
calibration values without increasing the number of PLS factors used.

The calibration statistical parameters used to evaluate models perfor-
mances include the standard error of calibration (SEC), the determination
coefficient for cross-validation (r2cv), the standard error of cross-validation
(SECV), the determination coefficient for prediction (r2pred), and the
standard error of prediction (SEP). SEC and SEP were calculated using
an Excel spreadsheet by squaring the differences of the actual minus the
predicted concentrations for each sample in the calibration (SEC) and test
(SEP) sets. These values were then summed, and the sum was divided by
the number of samples (n). The square root of this value was used for SEC
and SEP. SEC describes the calibration set, and SEP describes the test set
composed of samples not included in the calibration set. In addition to the

coefficients of determination for cross-validation (r2cv) and prediction
(r2pred), the ratio of performance to deviation (RPD = SD/SECV) was
also used to evaluate performances of the developed models (with SD as
the standard deviation of the original chemical data in the calibration
set) (20-22).

RESULTS AND DISCUSSION

Variability of the Major Constituents and Composition. Chemi-
cal analyses results are presented inTable 2. Overall, the sampling
approach based on the selection of morphological variation
within each crop species (Table 1) resulted in the assemblage of
472 highly variable accessions based on their major constituents
values. Except for starch (CV of 10.49%), the four other
constituents exhibited remarkable variation with respectively,
73.8% for total sugars, 38.3% for cellulose, 49.84% for total
nitrogen, and 30.51% for ashes (Table 2). This variation appears
somewhat lower than the one observed in the international
cassava collection (23, 24) but is comparable to the one reported
for sweet potato (3), and is greater than those previously reported
for taro (25, 26) and yams (27-30). Correlation coefficients
computed independently within each of the four crop species
(not presented here) revealed the same trends as those of the
whole sample composed of 472 accessions. Starch is negatively
but significantly correlated with sugars, cellulose, total nitrogen,
and ashes.

NIRS Calibration. NIRS spectra corresponding to 472 flour
samples over 350-2500nmwavelengths are presented inFigure 1.
PLS regression was applied to develop predictive models for the
five major constituents using the chemical values of 378 samples
and the near-infrared part of the spectra (1000-2500 nm)
(Table 3). The r2 values give an indication of the percentage
variation in theY variable that is accounted for by theX variable.
Therefore, r2 values above 0.50 indicate that over 50% of the
variation in Y is attributable to the variation in X. Higher
r2 values improve discrimination. It is generally accepted that
models with an r2 of 0.66-0.81 can be used for screening and that
approximate quantitative predictions, models with r2 values
between 0.83 and 0.90, can be used for many applications, while
models with values of 0.92-0.96 are suitable for most applica-
tions including quality control and those above 0.98 for all
applications. Model prediction accuracy was evaluated with
RPD: values below 1.5 are considered unusable, those between
1.5 and 2.0 can be used for rough predictions, those between
2.0 and 2.5 allow approximate quantitative predictions, while
values above 2.5 and 3.0 are, respectively, considered to be good
and excellent predictive models (23).

Figure 1. NIRS spectra corresponding to 472 flour samples over 350-2500 nm wavelength (absorbance).
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Regarding starch, the SECV values observed for each root and
tuber crop species were close to the SECs, which means fair and
robust fitting. These valueswere good estimations of the accuracy
of the equation as they were close to the standard error of
prediction (SEP) obtained on the validation samples (Table 3).
In fact, when combining the four crops together, the combined
model (all spp.) values were 2.41 for SECV, 2.70 for SEC,
and 2.74 for SEP. The equation for cassava explained the least
amount of variation (82%) within the reference values (chemical
results) with a SECV equal to 1.10%, whereas the equation of
yam presented an r2cv equal to 0.88 with a SECV error equal to
2.03% and r2pred of 0.91. The r2cv for the equation of all spp.
combined was equal to 0.91 with an r2pred of 0.87. Deviations of
single samples are visualized in a scatter plot between measured
and predicted values (Figure 2). In terms of predictive perfor-
mance, the equations for starch are good with RPD parameters
above 2 for yam and all spp. combined.

The total sugars model developed for all spp. combined
presented very similar SECV, SEC, and SEP values, 1.64, 1.64,
and 1.66, respectively, indicating very robust fitting. Deviations
of single samples are visualized in a scatter plot betweenmeasured
and predicted values (Figure 3). Surprisingly, these values were
more variable for models developed for cassava (0.79-0.92-
0.58), sweet potato (1.77-2.15-1.53), taro (1.42-1.69-1.21),
and yam (0.93-1.21-1.37). Total sugars were predicted with
91% of confidence for sweet potato but only 64% for taro.

Total nitrogen SECV values obtained with the model deve-
loped with all spp. combined were close to SEC and SEP values
(0.73-0.88-0.77), indicating good and robust prediction with
93% of confidence in prediction. Deviations of single samples are
visualized in a scatter plot betweenmeasured and predicted values
(Figure 4). The r2cv and r

2
predwere high for all four speciesmodels,

with the second ranging from 0.81 for taro to 0.96 for cassava.

Surprisingly and although minerals have a poor relationship
withNIRS, they could be predicted with 71% of confidence in all
spp. combined, with 82% in taro and up to 90% of confidence in
cassava as shown by their respective r2pred values (Figure 5).

Cellulose was not satisfactorily predicted. No PLS term was
obtained for cassava, limiting further calculations. The determi-
nation coefficients for calibration and prediction (r2cv and r2pred
values) were very low and were all under 0.4, indicating poor
prediction confidence (Figure 6).

The confrontation of the NIRS spectra and the chemical value
allowed for the establishment of equations of calibration for the
prediction of starch, sugars, and total nitrogens. The statistical
parameters obtained are of special interest for flour quality
control. These constituents are quantitatively the most important
ones for determining the chemical composition of flour, sugars
and total nitrogen being negatively correlated with starch. Their
respective r2pred values (0.87, 0.86, and 0.93) are high and allow
for good estimates of their contents in root and tuber crop flours.
However, determination coefficients for the prediction sets
(r2pred) cannot reflect the whole situation because the range of
sample values in the prediction test set affects the coefficient
value. SEP is, therefore, a better overall indicator.

RPDs are between 2 and 2.5 in eight models allowing for
approximate quantitative predictions to be made, and values
above 2.5, considered to be good models, are observed for starch
in all spp., sugars in yam, and total nitrogen in sweet potato. The
model for total nitrogen in all spp. combined with a RPD value
above 3 can be considered as an excellent predictive model (23).
The number of terms is relatively low if we consider a general
recommendation of 1 factor for every 10 samples in a model
(Table 3).

When comparing the performances of the combined model
(all spp.) versusmodels developed for individual crop species, it is

Table 2. Major Constituents Analyzed in 472 Samples of Tropical Root and Tuber Crops

species n moisture % TDW starch % DM sugars % DM cellulose % DM total nitrogen % DM ashes % DM

cassava 62

min 8.45 79.84 1.52 1.73 1.33 1.24

max 11.16 91.21 10.12 6.98 5.61 3.53

mean 9.97 86.49 4.43 3.37 2.59 2.45

std error 9.97 2.68 1.60 1.09 0.82 0.45

CV % 5.86 3.1 36.08 32.27 31.71 18.26

sweet potato 167

min 6.6 53.3 1.49 2.39 2.67 2.06

max 12.04 83.83 25.29 12.56 10.2 8.22

mean 9.61 69.15 10.17 4.11 5.92 3.5

std error 0.58 5.85 4.83 1.46 1.23 0.87

CV % 11.23 8.47 47.49 35.39 20.73 24.76

taro 108

min 8.8 60.77 0.9 1.4 2.3 1.47

max 14.05 88.2 18.58 7.3 14.79 8.13

mean 11.2 78.01 5.17 3.4 5.45 4.08

std error 1.26 5.62 3.00 1.02 1.99 0.99

CV % 11.41 7.21 58.01 30.11 36.44 24.28

yam 135

min 5.6 58.78 0.4 0.1 4.4 1.58

max 12.7 90.4 18.3 6.3 21 8.1

mean 10.7 77.14 3.62 2.68 10.39 4.36

std error 1.1 6.09 3.56 0.98 3.13 1.20

CV % 10.1 7.9 98.19 36.61 30.16 27.56

total 472

min 5.6 53.3 0.4 0.1 1.33 1.24

max 14.05 91.21 25.29 12.56 21 8.22

mean 10.29 75.74 6.4 3.44 6.66 3.74

std error 1.25 7.95 4.72 1.32 3.32 1.14

CV % 12.17 10.49 73.8 38.3 49.84 30.51
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Table 3. Statistical Parameters of the Calibration and Prediction Setsa

prediction set

calibration set each sp. predictb all predictc

model region (nm) n mean % DM SD SEL ( out-liers H > 3 PLS terms r2cv SECV SEC n r2pred SEP RPD r2pred SEP

Starch

cassava 1100-2300 50 86.01 2.11 2.58 0 8 0.83 1.10 1.32 12 0.82 1.44 1.92 0.56 2.07

sweet potato 1000-2400 133 68.97 4.53 2.07 0 9 0.80 2.60 3.18 34 0.83 2.55 1.74 0.81 2.75

taro 1200-2200 87 78.62 4.47 2.36 4 8 0.78 2.51 2.95 21 0.86 2.22 1.78 0.79 2.98

yam 1000-2400 108 77.77 4.53 2.33 1 11 0.88 2.03 2.70 27 0.91 1.55 2.23 0.74 2.79

all spp. 1000-2200 378 76.51 6.57 2.30 9 14 0.91 2.41 2.70 94 0.87 2.74 2.73 0.87 2.74

Sugars

cassava 1000-2200 50 4.65 1.15 0.14 2 6 0.70 0.79 0.92 12 0.77 0.58 1.46 0.86 0.70

sweet potato 1000-2400 133 10.32 3.83 0.31 0 8 0.86 1.77 2.15 34 0.91 1.53 2.16 0.89 1.87

taro 1200-2400 87 5.33 2.19 0.16 4 6 0.65 1.42 1.69 21 0.64 1.21 1.54 0.58 1.51

yam 1200-2400 108 3.24 2.60 0.10 6 9 0.90 0.93 1.21 27 0.72 1.37 2.80 0.55 1.97

all spp. 1200-2400 378 5.74 3.78 0.17 8 10 0.88 1.64 1.64 94 0.86 1.66 2.30 0.86 1.66

Cellulose

cassava 1000-2500 50 3.48 0.81 0.10 0 12 0.01 1.38

sweet potato 1200-2400 133 4.63 0.99 0.14 0 3 0.14 1.35 1.87 34 0.25 0.18 0.73 0.08 1.15

taro 1200-2200 87 3.18 0.74 0.10 5 2 0.23 0.80 0.98 21 0.36 0.04 0.93 0.58 0.85

yam 1000-2400 108 2.39 0.75 0.07 3 2 0.39 0.69 0.69 27 0.28 0.81 1.09 0.34 0.79

all spp. 1000-2400 378 3.34 0.94 0.10 9 8 0.29 0.98 1.13 94 0.31 1.03 0.96 0.31 1.03

Total Nitrogen

cassava 1200-2400 50 2.40 0.62 0.05 4 7 0.88 0.29 0.28 12 0.96 0.14 2.14 0.95 0.36

sweet potato 1200-2400 133 5.78 0.92 0.12 4 9 0.88 0.41 0.61 34 0.81 0.65 2.24 0.70 0.82

taro 1000-2400 87 5.68 1.40 0.11 8 9 0.89 0.48 0.57 21 0.94 0.30 2.92 0.89 0.67

yam 1200-2400 108 10.12 2.38 0.20 3 6 0.89 1.03 1.26 27 0.88 0.78 2.31 0.85 0.89

all spp. 1200-2400 378 6.53 2.56 0.13 11 11 0.95 0.73 0.88 94 0.93 0.77 3.51 0.93 0.77

Ash

cassava 1000-2400 50 2.58 0.34 0.05 2 6 0.85 0.17 0.20 12 0.90 2.62 2.00 0.94 0.15

sweet potato 1200-2400 133 3.33 0.54 0.07 3 5 0.40 0.55 0.70 34 0.43 0.51 0.98 0.26 0.61

taro 1200-2400 87 4.22 0.72 0.08 5 6 0.84 0.35 0.46 21 0.82 0.62 2.06 0.68 0.74

yam 1300-2400 108 4.38 0.95 0.09 1 7 0.48 0.87 1.38 27 0.61 0.80 1.09 0.60 0.90

all spp. 1000-2400 378 3.89 0.88 0.08 7 11 0.70 0.57 0.70 94 0.71 0.70 1.54 0.71 0.70

a r2cv = determination coefficient of calibration; SD = standard deviation of the chemical data; SEL = standard error of the reference method; SECV = standard error of
cross-validation; SEC = standard error of calibration; r2pred = determination coefficient of prediction; SEP = standard error of prediction; RPD = ratio of performance to devia-
tion (RPD = SD/SECV). bModels developed for each sp. are used to predict each sp. test sets. cModels developed for all spp. combined are used to predict each sp.
test sets.

Figure 2. Starch prediction comparison on an independent test set.
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interesting to observe, in the case of starch, for example, that since
all SEP valueswere similar to the overall SEP, no crop species was
poorly represented by the combined model. Determination co-
efficients generally improve as the working range increases.
Consequently, if more ranges are added when different species
are combined in the same model, then they could improve
coefficient values. Additionally, when different species values
are combined, a larger spectral diversity is described, and there-
fore, some samples within a particular species might actually be
better spectrally described as the spectra of the four species have
been added together. When comparing the performance of the
models developed using the values of all spp. combined, in most
cases the SECV individual was close enough to the SEP com-
bined, indicating fairly robust fitting. Also, comparing the SECV
combined with the SEP combined (on individual species) showed
that almost all species were well represented by the combined
model. This demonstrates that individual species can be com-
bined in a single model without adverse results. These findings

show that NIR spectroscopy has the potential to serve as a rapid
method for predicting the chemical composition of root and tuber
crop flours.

Similar studies have already been conducted on flours made
from cereals.NIRS has been shown to be useful for predicting the
protein composition of rice flour, the bestmodel giving r2=0.992
(SEP=0.138%) (31, 32). The use of NIRS has also been pro-
posed to monitor the protein content of flour in order to optimize
the milling conditions. Control of the blending of flours or
supplementation with wheat gluten to achieve a composite flour
of a given protein content has been suggested (33). The accuracy
and precision of NIR for protein, moisture, particle size, color,
and starch damage were satisfactory for quality control purposes
and rapid flour testing (34). For wheat flour, protein content has
been predicted with accuracy similar to that of the reference
method with an r2 of 0.99 (35). NIRS is also an interesting
technique for breeders. NIR analysis has been shown to be
sufficiently accurate for the routine screening of large numbers

Figure 3. Sugar prediction comparison on an independent test set.

Figure 4. Total nitrogen prediction comparison on an independent test set.
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of samples in early generation selection in rice breeding pro-
grams (36). Whole NIRS spectra provided a useful tool for
describing the global evolution of the chemical composition of
the grain of French wheat and for analyzing their evolution (37).

The protein content is usually estimated by multiplying the total
nitrogen content by a standard conversion factor of 6.25. However,
the nitrogen to protein ratio does vary according to the species
considered. This factor is different for each crop species and changes
with amino acid content and mineral nitrogen and nonprotein
nitrogen in flour. Because conversion factors are critical to enabling
the simple conversion of total nitrogen values into protein values, it
would be necessary to use specific conversion factors for different
root crop species (38, 39). This would be more accurate and
preferable when attempting to express nitrogen as protein.Unfortu-
nately, although some work has been done on tropical root crop
species, such as sweet potato (40), the greater yam (D. alata) (41),
and cassava (42), notmuch is known for other yam species and taro.
For cassava, however, the work was conducted on only 15 varieties,
and conversion factors based on Kjeldahl nitrogen ranged from

2.5 to 3.7. For the present study, we therefore decided to present our
results as total nitrogen andnot protein. Itwouldbe of interest in the
future to improve the calibrationmodels on the real protein contents
of each species which vary according to amino acids, the principal
nutritional viewpoint.

NIRS is a rapid and reliable technique that has found many
applications within the fields of food and crop analysis (43). The
advantages of NIRS are very low operating costs and a lack of
production of chemicals (toxic) and/or waste products. NIRS
predictions are frequently more reproducible than the chemical
analyses used as the reference method. The absence of chemicals
involved and the simple spectral collection help to eliminate
operator errors and improve the transferability of methods
between countries. The major constraint is the need to build a
stable and reliable calibration model, which in itself is dependent
on robust and accurate laboratory references and a large and
diverse sample calibration set. These attributes are making NIRS
an interesting technique for developing countries, either for
quality control or for breeding programs.

Figure 5. Mineral prediction comparison on an independent test set.

Figure 6. Cellulose prediction comparison on an independent test set.
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At present, depending on the technical and financial means,
there is some variation between the existing breeding programs,
but the rationale is the same. Heavy selection pressure is applied
very early for resistance to diseases. The selection process is visual
in order to minimize the costs and maximize the number of
genotypes assessed. The selected clones are then released as new
varieties. A new selection cycle begins in which the new varieties
are used as parents. The selection process is equivalent to mass
recurrent selection. Great numbers have to be screened to achieve
some progress. The process is based on the capture of additive
effects and is particularly efficient for traits with high heritability
when there is a broad genetic base. Unfortunately, chemotypes
with attractive properties are often eliminated because of the
high selection pressure on other traits. A common difficulty in
breeding programs is to satisfy the requirements of both the
industry and the fresh market. An industrial variety must have
high dry matter and starch contents (for alcohol production
and starch extraction). For human fresh consumption, flesh
color and good cooking quality are important traits. High
carotene and proteins are preferred for the feed industry. Ob-
viously, NIRS could assist breeders in their choice and selection
of the best genotypes, on the basis of the chemical composi-
tion required for their ideotype depending on the chemotype
requested by the market (high starch, amylose, sugars, or protein
content).

The results from this study demonstrate that NIRS has good
potential for the screening of starch, sugars, and total nitrogen
contents of flours made from tropical root and tuber crops.
The combined model (all spp.) remains interesting. It is not
as accurate as the single species models, but if we consider
that unknown genotypes, not previously encountered with the
single species model, are added to a collection, it is likely that
the combined model would do better because it contains a
wider range of diversity. For a germplasm screening tool,
it would probably make sense to use the combined model
because it represents more spectral variation. It could be of
particular interest for genetic resource curators willing to char-
acterize their numerous accessions rapidly. Such a model has a
wide prediction range which allows the rapid assessment of
unknown genotypes, and it could therefore be used for pre-
liminary screenings.

The species predictive models show good accuracy, but it
remains to be seenwhether larger sample sets will improvemodels
sufficiently to enable more precise prediction of the concentra-
tions within each crop species (cassava, sweet potato, taro, and
yam). Further work should concentrate on validating the results
across a wider range of genotypes within the four major species,
over different years, and on developing more stable predictive
models. These species models could be useful for breeding
programs. Other constituents such as amylose, carotenoids, or
individual sugars should be investigated.

ABBREVIATIONS USED

r2cv, determination coefficient of calibration; SD, standard
deviation of the chemical data; SEL, standard error of the
reference method; SECV, standard error of cross-validation;
SEC, standard error of calibration; r2pred, determination coeffi-
cient of prediction; SEP, standard error of prediction; RPD, ratio
of performance to deviation (RPD = SD/SECV).
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